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Abstract

The numerical simulation of physical phenomena and engineering problems can be affected by numer-
ical errors and various types of uncertainties. Characterizing the former in computational frameworks
involving system parameter uncertainties becomes a key issue. In this work, we study the behavior of
new variational multiscale (VMS) error estimators for the propagation of parametric uncertainties in a
Convection-Diffusion-Reaction (CDR) problem. A sensitivity analysis is performed to assess the perfor-
mance of the error estimator with respect to the mesh discretization and physical parameters (here, the
viscosity value and advection velocity). Three different manufactured analytical solutions are considered
as benchmarking tests. Next, the performance of the VMS error estimators is evaluated for the CDR
problem with uncertain input parameters. For this purpose, two probabilistic models are constructed
for the viscosity and advection direction, and the uncertainties are propagated using a polynomial chaos
expansion approach. A convergence analysis is specifically carried out for different configurations, cor-
responding to regimes where the CDR operator is either smooth or non-smooth. An assessment of the
proposed error estimator is finally conducted for the three tests, considering both the viscous- and
convection-dominated regimes.

Keywords: Variational multiscale method; a posteriori error estimation; convection-diffusion-reaction
equation; uncertainty propagation.

1. Introduction

The numerical simulation of physical phenomena has found widespread applications in the engi-
neering sciences, and relies on approximating the state of a system with an approximate state, called
numerical solution hereinafter. Let φtrue be a quantity of interest that represents a certain physical phe-
nomena, e.g. the velocity field of a fluid. Let φmod be the quantity of interest given by the mathematical
model that describes the physical phenomena. The numerical solution is computed on a certain mesh
that discretizes a given domain with a certain characteristic size, h. We will denote as φh the numerical
solution of the quantity of interest φmod. Following [1], we can distinguish between two types of error that
are responsible of the difference between the true solution and the numerical solution (ε): the numerical
error, εnum, and the model error, εmod, related as

εnum = φmod − φh, (1a)

εmod = φtrue − φmod, (1b)

ε = φtrue − φh = εmod + εnum. (1c)
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The numerical error includes the discretization error (both in space and time), denoted as εdisc, the
iterative convergence error, εconv, and round-off error, εroun. In order to determine the error of the
numerical approximation, each source of error should be taken into account, i.e. εnum = εdisc+εconv+εroun.
In practical situations, the convergence and round-off errors are small and easy to determine, therefore,
the numerical error will be dominated by the discretization error. In what follows, we will not distinguish
between numerical and discretization error, assuming that εnum ≈ εdisc. From (1c), we also see that the
true solution is approximated by the numerical solution up to an error, φtrue = φh + ε. Since, in general,
one cannot obtain an exact value of the error, the numerical solution reproduces the true solution with
an associated uncertainty. The characterization of this uncertainty is crucial for decision making in many
engineering problems and can be addressed using Uncertainty Quantification (UQ) techniques [2].

Different approaches can be used to characterize the numerical uncertainty on a given simulation.
One of them is the use of deterministic error estimators, see e.g., [3, 4], in which an approximation of the
discretization error is obtained a posteriori, for a given solution. Another approach was proposed in [5],
where the numerical error uncertainty is defined as a nonlinear function depending on the discretization
error, the error on the measurement of the input data, and the error produced by the uncertainty
propagation method. In this research, we focus on the definition of a family of deterministic error
estimators to characterize the discretization error. Two different groups of discretization error estimators
are usually distinguished in the literature, see [6]. A first group based on the use of more accurate
solutions, e.g., Richardson extrapolation, see for instance [7] and references therein. The second group
of numerical error estimators are based on the residual of the partial differential equation (PDE) that
models the problem, e.g., adjoint methods. The error estimators described in this paper can be included
into the second group. Since the first developments on the definition of a posteriori error estimators
done by Babuska and Rheinboldt in [8], many works have been published during the last few decades.
In [9] a wide overview of a posteriori error estimator for FE is given. Other reviews on a posteriori
error estimators can be found, for instance, in [6, 10]. In [11] Hauke and coworkers introduced the
variational multiscale (VMS) method [12] for the a posteriori error estimation of numerical simulations.
This approach was then extended to multi-dimensional transport problems [13], and to the Euler and
Navier-Stokes equations [14]. Recently, a point-wise error estimator based on VMS error estimators has
also been proposed [15], and its extension to a FV framework has been proposed in [16].

The aim of this paper is twofold. First, we propose to define a new variation of the VMS error
estimators based on orthogonal subscales, a concept introduced by Codina in [17], for the convection-
diffusion-reaction (CDR) problem. In a recent work, Baiges et al. [18] developed similar error estimators
based on the energy norm for the solid mechanics problem. Note that error estimators based on Lr-
norms will be considered hereinafter, in contrast with the derivations in [18]. Next, we investigate the
behavior of the proposed error estimators when the coefficients in the CDR problem are made random.
It should be noticed that since this work is not concerned with mesh adaptivity, results will be presented
on the values of the global error estimator (rather than on the distribution of the numerical error over
the physical domain).

The document is organized as follows. After the introduction, the preliminary definitions are given
in Section 2, with the boundary value problem definition and the description of the VMS method. In
Section 3 we describe the new error estimators based on orthogonal subscales. Some numerical results in
a deterministic setting are given in Section 4 for three different tests. In Section 5 the effect of uncertain
input parameters over the defined error estimators is assessed. Finally, some conclusions are pointed out
in Section 6.

2. Preliminaries

2.1. The boundary value problem

Let us consider the spatial domain Ω with boundaries ΓD∪ΓN = Γ, being ΓD the Dirichlet (essential)
boundary and ΓN the Neumann (natural) boundary, and ΓD ∩ ΓN = ∅. The strong form of the steady
convection-diffusion-reaction (CDR) problem reads:
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Find u such that

−ν∆u+ a · ∇u+ su = f in Ω, (2)

u = g on ΓD,

Bu = h on ΓN ,

where ν is the viscosity, a the advection velocity, s the reaction, g a given function defined on the Dirichlet
boundary ΓD, h a given function defined on the boundary ΓN and f the external source term defined
in Ω. Furthermore, Bu is the Neumann boundary operator acting over u, defined as Bu := ν∇u · n. Let
us define the CDR operator as

Lu := −ν∆u+ a · ∇u+ su. (3)

Some notation has to be defined before we proceed with the derivation of the weak problem. We
denote by Lp(Ω), 1 ≤ p <∞, the spaces of functions such that their p-th power is absolutely integrable
in Ω. For the case in which p = 2, we have a Hilbert space with scalar product

(u, v)Ω ≡ (u, v) :=

∫
Ω

u(x) v(x) dΩ (4)

and induced norm ‖u‖L2(Ω) ≡ ‖u‖ = (u, u)1/2. The space of functions whose distributional derivatives
up to order m are in L2(Ω) are denoted by Hm(Ω). We will focus on the case of m = 1, which is also
a Hilbert space. H1

0 (Ω) is the set of functions in H1(Ω) that have zero trace on ΓD, and H1
g (Ω) the set

of functions u ∈ H1(Ω) such that u = g on ΓD. The weak form of the problem (2) can be stated as:

Find u ∈ Vg such that
a(v, u) = (v, f) + (v, h)ΓN ∀v ∈ V0, (5)

where a(·, ·) is the bilinear form defined as

a(v, u) := (v,Lu) + (v,Bu)ΓN , (6)

and the variational spaces Vg and V0 are defined as

Vg := {v ∈ H1(Ω) : v|ΓD = g} ≡ H1
g (Ω), (7)

V0 := {v ∈ H1(Ω) : v|ΓD = 0} ≡ H1
0 (Ω). (8)

Let us consider a finite element partition Th of the domain Ω from which we can construct a con-
forming Finite Element (FE) space Vh ⊂ V. Let Eh = ∪K∈Th∂K be the set of the faces (or edges in 2D)
of the mesh and E0

h = Eh\Γ. The FE spaces equivalent to (7)-(8) can be defined as

Vg,h := {vh ∈ Vh : vh|K∩ΓD = g}, (9)

V0,h := {vh ∈ Vh : vh|K∩ΓD = 0}. (10)

The Galerkin FE approximation of (5) consists in finding uh ∈ Vg,h such that

a(vh, uh) = (vh, f) + (vh, h)ΓN ∀vh ∈ V0,h. (11)

2.2. The variational multiscale method

It is well known that the Galerkin approximation obtained solving (11) suffers from numerical insta-
bilities in the convection-dominated regime. In order to overcome this issue, the variational multiscale
stabilization can be adopted (see Hughes [12]), as outlined in what follows.

Let us consider a decomposition of the variational space V = Vh ⊕ V ′ into the space of resolved
scales Vh (associated with the FE solution) and the space of unresolved scales V ′ (associated with the
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error). Applying this decomposition to the solution u = uh + u′ and the test function v = vh + v′, and
introducing the result into (5) we obtain the following weak problems.

a(vh, uh) = −a(vh, u
′) + (vh, f) + (vh, h)ΓN ∀vh ∈ V0,h, (12)

a(v′, u′) = −a(v′, uh) + (v′, f) + (v′, h)ΓN ∀v′ ∈ V ′0. (13)

Problem (12) can be solved since Vh is a finite-dimensional space, but problem (13) is defined in an
infinite-dimensional space, and for this reason is in general not computable.

Equation (13) can be used to approximate u′ in terms of the residual of the CDR operator acting
on the finite element component uh [12]:

u′ ≈ τP(f − Luh), (14)

where P is a certain projection into the space of the subscales and τ an intrinsic time-scale (which has
the meaning of an approximation to the fine-scale Green’s function). In this work, we will consider the
definition of the stabilization parameter given by [19]:

τ =

(
c1ν

h2
+
c2|a|
h

+ |s|
)−1

, (15)

with c1 and c2 two algorithmic constants, usually taken as c1 = 4 and c2 = 2. Alternative definitions
can be found in [20, 21, 13].

Remark. Different choices of the elemental characteristic length h can be made. For instance, we will
consider the volumetric element length, hvol := (meas(K)1/d), for the viscous effects, i.e. h = hvol in the
terms in which there appear the viscosity, ν, in equation (15). We will instead consider the elemental
length along the flow direction for the advective terms, i.e. h = ha in the term c2|a|/h in (15).

Integrating by parts the term a(vh, u
′) on (12), we obtain

a(uh, vh) +
∑
K∈Th

(u′,L∗vh)K = (f, vh) + (vh, h)ΓN ∀vh ∈ V0,h, (16)

where L∗w := −ν∆w−a ·∇w+ sw is the adjoin operator of the CDR problem. Now, equation (16) can
be solved making use of the approximation (14).

The choice of the subscales subspace V ′ has not been discussed yet. The standard VMS method
(often also denoted by algebraic subgrid scales (ASGS) method, [17, 22]) assumes that the projection
is the identity operator, P ≡ I, making the subscales dependent on the full residual. In this work we
will also consider the case in which the subscales space is defined to be orthogonal to the FE space, i.e.
V ′ = V⊥h . This concept was introduced by Codina in [17] and in that case, the projection appearing in
(14) would be defined as P := Π⊥h = (I − Πh). Where I is the identity and Πh is the projection into
the FE space. In what follows, we will denote the orthogonal subscales method as OSS, for which (14)
is replaced by

u′ ≈ τΠ⊥h (f − Luh). (17)

The definition of the projection operator, Π⊥h , is discussed in Appendix A.

3. Variational multiscale error estimator based on orthogonal subscales

The small scale component u′ of the solution introduced in the VMS method can be understood as
the numerical error of our problem, that is, εnum = u− uh = u′. Then, an estimate for u′ is nothing else
than an error estimate of the numerical solution.

As mentioned on the introduction, the definition of error estimators based on the VMS approach
was first introduced by Hauke in [11], and extended to various applications in [13, 14, 23]. A definition
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of an error estimator using the OSS approach has been recently proposed in [18], based on the energy
norm, for solid mechanics.

In this work, we propose an error estimator definition based on Lr-norms using the OSS formula-
tion for the CDR problem, equivalent to the definition proposed in [13], derived next. The following
assumptions, typically used in the literature [12, 17], will be used in the definition of the error estimators:

Assumption 1. In a given element K ∈ Th with boundary ∂K, the subscales are local and can be
expressed as bubble functions, that is, they vanish on the element boundary

v′(x) = 0 ∀x ∈ ∂K,∀v′ ∈ V ′. (18)

Assumption 2. The subscales fluxes are continuous in the inter-element boundaries, that is,

JBv′K = 0 ∀v′ ∈ V ′. (19)

Let us start from the subscale weak problem (13). Introducing the bilinear form definition (5) into
the RHS term of equation (13), integrating element by element and integrating by parts the viscous
term, we have that

a(v′, u′) = (v′, f − Luh)Ω̃ − (v′, JBuhK)Γ̃ − (v′,Buh − h)Γh ∀v′ ∈ V ′0. (20)

Now, if we define the subscales space to be orthogonal to the FE space (see Appendix A), any
function belonging to the FE space, ξh ∈ Vh, satisfies

(v′, ξh)Ω̃ = 0 ∀v′ ∈ V ′. (21)

In particular, making use of (21), the orthogonal projection of the residual can be subtracted to (20)
and the following equation still holds

a(v′, u′) = (v′, f − Luh −Πh(f − Luh))Ω̃ − (v′, JBuhK)Γ̃ − (v′,Buh − h)Γh ∀v′ ∈ V ′0. (22)

Using Assumptions 1 and 2, and introducing the Green’s function, g′, for the dual problem, see
[12, 24], we obtain an analytical expression for the subscales

u′(x) =

∫
Ω̃

g′(x,y)(f−Luh−Πh(f−Luh))(y)dΩ−
∫

Γ̃

g′(x,y)(JBuhK)(y)dΓ−
∫

Γ

g′(x,y)(Buh−h)(y)dΓ.

(23)
Then, the small scales can be split into the element interior contributions (denoted as u′K) and the

inter-element boundary contribution (denoted as u′∂K), leading to

u′(x) = u′K(x) + u′∂K(x), (24)

with

u′K(x) =

∫
Ω̃

g′(x,y)(f − Luh −Πh(f − Luh))(y)dΩ, (25)

u′∂K(x) = −
∫

Γ̃

g′(x,y)(JBuhK)(y)dΓ−
∫

Γ

g′(x,y)(Buh − h)(y)dΓ. (26)

Following the procedures described in [13], for a given Lr-norm, ‖ · ‖Lr(Ω), with r ∈ N, we can obtain
an upper bound for the subscales in terms of the interior and inter-element norms. This is achieved
making use of the triangle inequality for equation (24) leading to

‖u′(x)‖Lr(Ω) ≤ ‖u′K(x)‖Lr(Ω) + ‖u′∂K(x)‖Lr(Ω). (27)

Hence, in order to have an upper bound for the error u′, it is sufficient to find an upper bound for u′K
and u′∂K .
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Remark. Other norms can be considered to construct an error estimator using the VMS approach, as it
has been shown in [25], but there it is argued that, for fluid dynamics and convection-diffusion problems,
Lr-norms are more suitable to construct a posteriori error estimators. In particular, the construction
of robust a posteriori error estimators based on upper bounds of the elemental energy norm result in a
dependency on the Péclet number in the definition of the error estimator, see [26].

To simplify the problem, we will only consider the case in which the whole domain boundary is of
Dirichlet type, that is, Γ ≡ ΓD. In this case, the boundary contribution will be only defined by the
inter-element jumps, namely: u′∂K(x) = −

∫
Γ̃
g′(x,y)(JBuhK)(y)dΓ.

3.1. Element interior bound

We can obtain a local estimate for the interior contributions by taking the Lr-norm of the subscale
approximation given in equation (17). Then, at a given element K ∈ Th, we have

‖u′K‖Lr(K) ≈ ‖τ(f − Luh −Πh(f − Luh))‖Lr(K), (28)

This approach was initially proposed in [11] and also used in [14], under the name of the standard
estimate. Since it is an approximation, this version cannot provide an upper bound for the error.

Alternatively, as shown in [13], an upper bound for the element interior can be derived. Starting
from the exact definition in (25), we approximate the global Green’s function g′(x,y) by an elemental
Green’s function gK(x,y) defined on a given element K. This approximation is justified when using the
VMS approach to solve the problem, since the error distribution is local [27]. Now, taking the absolute
value of (25) and applying the Hölder’s inequality, we can obtain an upper bound for the interior error
with the following expression

‖u′K‖Lr(K) ≤
∥∥‖gK(x,y)‖Lp(Ky)

∥∥
Lr(Kx)

‖f − Luh −Πh(f − Luh)‖Lq(K) , (29)

with 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1. In this work we will focus on the case p = 1, q =∞, which leads to
an expression that depends on the L∞-norm of the residual, and in particular, we will only consider the
r = 2 case (L2-norm of the error). According to [13], the first term on the RHS of (29) can be defined
as ∥∥‖gK(x,y)‖L1(Ky)

∥∥
L2(Kx)

= τKL2meas(K)1/2,

with τKL2 := min
(
hflow√

3|a| ,
h2

24.24ν ,
1
|s|

)
. Therefore, we have an upper bound for the element interior that

can be expressed as

‖u′K‖L2(K) ≤ τKL2meas(K)1/2 ‖f − Luh −Πh(f − Luh)‖L∞(K) . (30)

Remark. In this work we use the weighted projection of the residual defined in the Appendix A,
obtained through an L2-projection onto the FE space Vh weighted with the stabilization parameter
τ . In this case, improved results have been observed when the projection used to compute the error
estimator is weighted with the parameter τKL2 . In order to reduce computational costs, the projection

used to obtain the numerical solution is stored and then multiplied by a factor γ :=
τKLr
τ to obtain the

a posteriori error estimator.

3.2. Element boundary bound

The same procedure can be applied to obtain a bound for the contribution from the inter-element
boundaries. Applying Hölder’s inequality to (26) and the elemental Green’s function bound described
in [13], we arrive to the following expression

‖u′∂K‖L2(K) ≤ τKL2meas(K)1/2 1

2

meas(∂K)

meas(K)
‖JBuhK‖L∞(K) . (31)

Note that the orthogonality of the subscales is not invoked for this term, so the error estimator expression
for the inter-element boundary contributions is the same as the one defined in [13].
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3.3. A posteriori elemental error estimator

Introducing the element interior and the inter-element boundary bounds given in (30) and (31),
respectively, into (27) we obtain a local a posteriori error estimator based on the OSS formulation. For
a given element K ∈ Th the proposed error estimator reads

ηOSS

K := τKL2meas(K)1/2

(
‖f − Luh −Πh(f − Luh)‖L∞(K) +

1

2

meas(∂K)

meas(K)
‖JBuhK‖L∞(K)

)
. (32)

In this work, we will compare the performance of the error estimator ηOSS

K with the error estimator
based on the standard VMS method, defined in [13] and denoted as ηVMS

K hereinafter, which takes the
following expression

ηVMS

K := τKL2meas(K)1/2

(
‖f − Luh‖L∞(K) +

1

2

meas(∂K)

meas(K)
‖JBuhK‖L∞(K)

)
. (33)

Some considerations can be pointed out from the error estimator definitions (32) and (33).

Remark. On the hyperbolic limit, i.e. Lu := a · ∇u, the contribution of the element interior error
‖u′K‖Lr(Ωe) is crucial. Whereas, on the elliptic limit, i.e. Lu := −ν∆u, the contribution of the element
boundary error ‖u′∂K‖Lr(Ωe) is important.

Remark. Some comments are in order on the choice of the norms appearing in (29). As noted in [13],
the choice q = 1 and p =∞ would lead to a Green’s function norm that is not bounded in the convective
limit when r = 1. Moreover, the case p = q = 2 is also unbounded when r = 2, for convection and
diffusion dominated flows. The selected choice, p = 1 and q = ∞, leads to a bounded Green’s function
norm and it is well suited given that the Green’s function may not be smooth in a multidimensional
problem.

Remark. The error estimators ηOSS

K and ηVMS

K are very similar, differing in the definition of the residual
in the element interiors. Mainly, the OSS version (32) only takes into account the complement of the
L2-projection of the residual onto the FE space. This is a less conservative approach, and lower values
of the error are expected with respect to ηVMS

K , especially when the problem has a smooth solution.

Remark. The error estimator definitions given in (32) and (33) provide an upper bound of an estimated
error, not an upper bound of the exact error. Hence, there still exist the possibility of underestimating
the exact error.

It is important to highlight that ηOSS

K and ηVMS

K are explicit a posteriori error estimators. This means
that given a solution uh, the value of the error estimator can be easily evaluated without having to solve
any additional system. The algorithm used to compute these error estimators is given in Appendix B.

4. Numerical results

In this section we will assess the behavior of the proposed error estimators in a deterministic setting.
In order to evaluate the performance of an error estimator, we look at the efficiency index of the global
error estimation. We define the global error estimator based on the L2-norm as

η =

( ∑
K∈Th

η2
K

)1/2

. (34)

The efficiency index of a posteriori error estimate is the ratio between the estimated error and the exact
error

Ieff :=
η

‖u− uh‖L2

. (35)

We say that an error estimator is efficient if Ieff and I−1
eff are bounded for all triangulations, Th.

Moreover, an efficient error estimator is called robust for all kind of problems when Ieff and I−1
eff are
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bounded, regardless of the problem type (e.g., boundary conditions) and problem parameters. In what
follows, we want to assess the efficiency and robustness of the proposed error estimator, ηOSS, compared
against the standard VMS error estimator, ηVMS.

The following tests are solved using the formulation defined in equation (16), with the subscales
defined as in the standard VMS method (equation (14) with P ≡ I) or as in the OSS method (equation
(17)). We will favor the use of the VMS error estimator for the solutions computed with VMS formulation
and the OSS error estimator for the solutions computed with the OSS method. However, an analysis on
the effect of the different residual projections to the a posteriori error estimator will be done, looking
how the efficiency of the error estimator is modified when the different formulations are used to solve the
problem. Note that the OSS error estimators based on the Lr-norm have not been studied before and
part of the novelty of this work relies on the assessment of a posteriori error estimators suited for such
method. Nevertheless, a convergence test will be performed to confirm that the other VMS methods
give similar results.

All the following tests have been computed using FEMPAR [28], an open source object oriented
Fortran200X scientific software library. Note that the tests shown in this section are not computationally
intensive and can be solved using a serial environment. However, since the error estimators are local,
they can be directly used in a parallel setting.

4.1. Definition of the tests

In what follows, three different manufactured analytic solutions are tested, all of them defined in [29].
Knowing the exact solution, we can compute the exact error of the simulation, and then, the efficiency
of the error estimators can be assessed.

4.1.1. Polynomial solution (problem A)

The first test that we analyse consists on a manufactured polynomial solution. We impose a forcing
term such that the solution satisfies the following expression

u(x, y) = 100(1− x)2x2y(1− 2y)(1− y). (36)

Different viscosity values, ν, will be used with an advection velocity a = (3, 2)T and a reaction term
s = 1.0. We solve the problem on a unit square domain, Ω = [0, 1] × [0, 1] with Dirichlet boundary
conditions imposed along all the boundaries, ΓD = ∂Ω. In Figure 1(a) we show the solution of the
problem obtained with a 1282 linear quadrilateral elements mesh using the OSS method. Note that the
analytical solution to this problem does not depend on the physical parameters, i.e. viscosity, advection
velocity and reaction.

4.1.2. Boundary layer solution (problem B)

In this test we impose a manufactured analytical solution with a boundary layer. The solution is also
defined in a unit square domain, Ω = [0, 1]× [0, 1] with Dirichlet boundary conditions imposed along all
the boundaries, ΓD = ∂Ω. Here we impose a source term such that the solution of the equation satisfies

u(x, y) = xy2 − y2 exp

(
2(x− 1)

ν

)
− x exp

(
3(y − 1)

ν

)
+ exp

(
2(x− 1) + 3(y − 1)

ν

)
. (37)

As in the previous test, we consider different choices of viscosity, with an advection velocity a =
(2, 3)T and a reaction s = 1.0. Unlike the polynomial solution presented in the previous test case, here
the analytical solution depends on the viscosity value, ν. The computed solution for this problem with
ν = 1.0e− 4 is shown in Figure 1(b).
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4.1.3. Sharp inner layer solution (problem C)

Finally, the third test considered in this work consists also in a manufactured solution, representing
a circular inner boundary layer. We solve the problem in a squared domain of size Ω = (0, 1)2 with
homogeneous boundary conditions in the whole boundary. We prescribe an analytic force term such
that

u(x, y) = 16x(1− x)y(1− y)

1

2
+

arctan
(

2√
ν

(
0.252 − (x− 0.5)2 − (y − 0.5)2

))
π

 . (38)

In that case we also consider different choices of viscosity, with an advection velocity a = (2, 3)T and
a reaction s = 2.0. The analytical solution depends on the viscosity value also for this test case, and is
shown in Figure 1(c) for ν = 1.0e− 4.

(a) Problem A (b) Problem B (ν = 1.0e− 4) (c) Problem C (ν = 1.0e− 4)

Figure 1: Manufactured analytical solutions used in the tests.

4.2. Mesh refinement analysis

In this section we assess the behavior of the error estimators when the mesh is refined. A first
condition that an accurate error estimator has to satisfy is to match the convergence rate of the true error
as the mesh size is refined. It is well known that the rate of convergence of a numerical approximation
obtained using linear quadrilateral FE is ∼ h2. In Figure 2 we show the convergence rates for two
different values of viscosity, ν = {1.0, 1.0e − 6}, with the solution computed using the OSS method
defined through the subscales equation (17). The convergence rate of the error estimators matches the
convergence rate of the true error, independently of the viscosity value.

As stated above, in this work we will favor the VMS error estimator, ηVMS, to estimate the error
when the solution is computed using the standard VMS stabilization method, and the OSS error es-
timator, ηOSS, when the solution is computed using orthogonal subscales. However, in order to bring
some insight on the influence of the stabilization method, we look at the efficiency index of the two
error estimators evaluated from the numerical solution computed with both the VMS and OSS methods
(i.e., we consider all combinations of error estimator and stabilization method). In particular, for the
manufactured polynomial solution (probelm A), we evaluate the changes in the global efficiency of the
error for different grid sizes and values of viscosity, ν = {1.0, 1.0e − 2, 1.0e − 4, 1.0e − 6}, see Figure 3.
We recall that an efficiency index equal to one means that the estimated and true global errors match
(although locally these errors may be different).

We can observe that for high viscosity values, Figure 3(a) and Figure 3(b), the proposed OSS error
estimator give lower efficiencies than the standard VMS method. When the problem becomes advection-
dominated, Figure 3(c) and Figure 3(d), both methods give approximately the same results.

We can also see that for viscous dominated flows (ν = 1.0), the solution computed with the OSS
method gives higher efficiency values, while the standard VMS stays close to 1.0. However, when the

9



(a) ν = 1.0e− 0 (b) ν = 1.0e− 6

Figure 2: Problem A. error estimators convergence rate for different viscosity values.

(a) ν = 1.0e− 0 (b) ν = 1.0e− 2

(c) ν = 1.0e− 4 (d) ν = 1.0e− 6

Figure 3: Problem A. Global efficiency for different mesh sizes and viscosity values.

viscosity is reduced, the OSS method solution results in efficiencies closer to 1.0, while the VMS method
gives higher efficiencies.

Remark. The cost of evaluation of the two error estimators, ηOSS and ηVMS, is identical, provided that
the solution, uh, and the orthogonal projection of the residual, Πh(f − Luh), are already computed.
Note that when the standard VMS stabilization method is used to compute the solution, no projections
are needed. Then, in order to evaluate ηOSS, we will have to perform an additional global solve to obtain
the projections. Nevertheless, when the solution is computed using the OSS method, as we reuse the
projections, no additional solve needs to be done to evaluate ηOSS. For this reason, the use of ηOSS is
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more suitable when the OSS method is used as a stabilization method to compute the solution.

For the boundary layer solution test (problem B) stated in Section 4.1.2, we will only focus on the
ηVMS error estimator evaluated on the VMS solution, and on the ηOSS estimator evaluated from the OSS
solution. The global efficiency for the different viscosity and grid size values is shown in Figure 4. In
that case the OSS approach results in efficiency values slightly larger than the standard VMS method,
even for the advection-dominated cases. Note that for this test, the efficiency of the OSS error estimator
is closer to 1.0, especially in Figure 4(c) and Figure 4(d).

(a) ν = 1.0e− 0 (b) ν = 1.0e− 2

(c) ν = 1.0e− 4 (d) ν = 1.0e− 6

Figure 4: Problem B. Global efficiency for different mesh sizes and viscosity values.

In Figure 5 we depict the distribution of the local exact and estimated errors, Figure 5(a) and Figure
5(b), respectively, for a viscosity of ν = 1.0e− 6 using the OSS error estimator. Note that we have used
the same logarithmic scale for both figures. The error estimator overpredicts the exact error in regions
where the latter is close to zero, but matches it well in regions where the latter is large. Similar results
were observed in [13].

Finally, we look at the results for the sharp inner layer solution (problem C). The global efficiency
as a function of different viscosity values and grid sizes is shown in Figure 6. We can see that for this
test, the efficiencies go to zero for both error estimators, see Figure 6(a)-Figure 6(c). However, when
ν = 1.0e− 6, an efficiency of 1.0 is recovered, as shown in Figure 6(d).

To understand why the values of the efficiency index tend to zero for the viscous dominated cases,
we look in more detail at the distribution of the local errors, depicted in Figure 7 for two different
viscosity cases, ν = 1.0 and ν = 1.0e − 6, in a 642 elements mesh. Note also that in such figures, the
same logarithmic scales have been used for both the exact and estimated error plots. We can see that for
ν = 1.0, Figure 7(a) and Figure 7(b), the OSS error estimator underpredicts the exact error, especially
at the corners. But the prediction is much more accurate for the case of ν = 1.0e − 6, Figure 7(c) and
Figure 7(d), where the error estimator matches the exact error in terms of localization. It is important
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(a) Exact error. (b) Estimated error, ηOSS.

Figure 5: Problem B. Local exact and estimated errors with ν = 1.0e− 6.

(a) ν = 1.0e− 0 (b) ν = 1.0e− 2

(c) ν = 1.0e− 4 (d) ν = 1.0e− 6

Figure 6: Problem C. Global efficiency for different mesh sizes and viscosity values.

to highlight that the values of the error for the first case, ν = 1.0, are much lower than the case of
ν = 1.0e − 6 (four orders of magnitude). This behavior indicates that the error estimator can predict
the exact error location when this is relatively large, but it fails when the error is low (εnum ∼ 10−6).
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(a) Exact error with ν = 1.0 (b) Estimated error, ηOSS, with ν = 1.0

(c) Exact error with ν = 1.0e− 6 (d) Estimated error, ηOSS, with ν = 1.0e− 6

Figure 7: Problem C. Local exact and estimated errors with ν = 1.0 and ν = 1.0e− 6.

4.2.1. Comparison with other error estimator definitions

The results of the previous section, can be put into perspective by comparing the performance of
the OSS error estimator ηOSS with other errors estimators from the literature. In particular, we compare
against the tests reported in [29], where six different error estimators are compared. Note that there is
a slight difference with the reaction parameter value of problem A, which in this paper has been chosen
s = 1.0, while in [29] is s = 2.0. A particular emphasis will be made to the error estimator denoted as
ηres−L2 , which is a residual based error estimator in the L2-norm, like the one proposed in this paper.
We refer the reader to [29] for the exact definition of each estimator.

Figure 8 shows the values of the different error estimators for the three different problems of Section
4.1, for a viscosity value of ν = 1.0e − 6 in terms of the number of degrees of freedom (DOFs) used
to solve the problem. As shown, the proposed error estimator performs well compared with the errors
defined in [29]. In particular, the efficiencies of ηOSS are much closer to 1.0 than the equivalent ηres−L2 ,
demonstrating an improved robustness.

4.3. Parametric study

4.3.1. Effect of the mesh distortion

All the results shown in Section 4.2 have been computed on a uniform structured mesh with quadri-
lateral elements. Nevertheless, in practical situations the meshes in which one has to compute may not
be structured neither uniform, and it is well known that the mesh configuration does have an effect on
the final solution. A robust error estimator should be able to capture the increase of the numerical error
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(a) Problem A, ν = 1.0e− 6 (b) Problem B, ν = 1.0e− 6 (c) Problem C, ν = 1.0e− 6

Figure 8: Comparison of the global efficiency between ηOSS and the results from [29].

when the mesh is distorted. In order to prove that the proposed error estimators are well-behaved when
non-uniform meshes are used, we solve the problem on a distorted mesh whose coordinates have been
modified according to the following law

xnew = xold +
1.0

60.0

d∏
i=1

sin(2πλxold,i), (39)

with λ a parameter that controls the distortion of the mesh. In Figure 9(a) , Figure 9(b) and Figure
9(c) we plot the mesh when the mapping (39) is applied with λ = 0.0, λ = 4.0 and λ = 8.0, respectively.
Note that for λ > 8.0, we would have non-convex elements.

(a) λ = 0.0 (b) λ = 4.0 (c) λ = 8.0

Figure 9: Distorted meshes with 322 quadrilateral elements.

A parametric study is performed to check the behaviour of the error estimators with respect to the
distortion of the mesh. The polynomial analytical solution test case (problem A) is solved using different
meshes, with 322, 642 and 1282 elements. A viscosity ν = 10−4 and an advection vector a = (3, 2)T

are taken. In Figure 10 we plot the evolution of the estimated error values, and the corresponding
efficiencies, when the parameter λ varies from 0.0 to 8.0. As expected, we see that the estimated errors
increase when the mesh is distorted (Figure 10(a), Figure 10(b) and Figure 10(c)). Note that for this
case, both error estimators give very similar results, meaning that the mesh distortion is affecting the
two error estimators in an analogous way.

Looking at Figure 10(d), Figure 10(e) and Figure 10(f)), we see that when the mesh is refined the
efficiencies flatten, which can be interpreted as a reduction of the mesh distortion influence on the
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(a) Errors, 322 elements (b) Errors, 642 elements (c) Errors, 1282 elements

(d) Efficiency, 322 elements (e) Efficiency, 642 elements (f) Efficiency, 1282 elements

Figure 10: Evolution of the error and efficiency with respect to λ for different meshes.

accuracy of the error estimators. These results are also in concordance with Figure 3(c) (exactly the
same for λ = 0.0), in which we have seen that the efficiency is higher for ηVMS and closer to 1.0 for ηOSS.

4.3.2. Effect of the viscosity

We have seen that the proposed error estimators have a good performance when refining the mesh
for different viscosity values. But now we want to check in a more systematic way the sensitivity of the
error estimators with respect to the physical parameters. In this subsection we perform a parametric
study with respect to the viscosity.

An important goal of this analysis is to assess the smoothness of the error estimator as a function
of the physical parameters. This will affect the performance of the propagation method used to account
for uncertainty on the physical parameters, see Section 5.2.

In order to check the effect of the viscosity, we compute the error estimators for a given mesh size
(322 and 642 elements mesh) for a viscosity ν ∈ [1.0e− 6, 1.0]. The global estimated error and efficiency
results are plotted in Figure 11 for both definitions, ηVMS and ηOSS.

Looking at the estimated errors evolution shown in Figure 11(a) and Figure 11(c), we see that there
are two clearly distinguishable regions: one in which the error estimators do not depend on the viscosity
values, when ν < 1.0e − 4, and another region in which there is a high dependency on the viscosity,
for ν > 1.0e − 4. We can identify these two regions as the advection dominated state and the viscous
dominated state, respectively.

Note that the estimated errors present a cusp near ν = 1.0e − 2. This behaviour can be caused by
the fact that we have an L∞-norm on the definition of the error estimator, which can give this type of
functions when the residual goes from positive to negative, or vice-versa. The efficiency plots, Figure
11(b) and Figure 11(d), inherit this cusp.

It is also noticeable that the OSS error estimator, ηOSS, gives efficiency values closer to 1.0 than the
standard VMS error estimator, ηVMS.
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(a) Errors for a 322 elements mesh (b) Efficiency for a 322 elements mesh

(c) Errors for a 642 elements mesh (d) Efficiency for a 642 elements mesh

Figure 11: Polynomial solution. Sensitivity analysis of the error estimators with respect to the viscosity.

4.3.3. Effect of the advection direction

The same analysis can be done varying the advection direction. In that case we select a direction in
the range α ∈ [−π, π], keeping the advection magnitude constant |a| =

√
32 + 22. We check the variation

of the error estimators in the advection-dominated regime, with a viscosity ν = 1.0e− 4, and a reaction
s = 1.0. The results for that case are shown in Figure 12, where a 642 elements mesh has been used.

(a) Errors for a 642 elements mesh (b) Efficiency for a 642 elements mesh

Figure 12: Polynomial solution. Sensitivity analysis of the error estimators with respect to the advection direction.
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In Figure 12(a) we see that the advection direction does affect the values of the error estimator, as
expected. Nonetheless, the effect that this dependency has over the efficiency values is moderate, i.e. the
accuracy of the error estimator is reasonably good for any advection direction angle. This is observed
in Figure 12(b), where we see that the efficiency of ηOSS is kept between 0.5 and 1.0, and the efficiency
of ηVMS between 1.0 and 1.5.

5. Uncertainty quantification

The aim of this section is to investigate the impact of system-parameter uncertainties on the error
estimator. In turbulent flows, such uncertainties can be associated, for instance, with the unpredictability
of the velocity fluctuations (in direction and/or magnitude) at a given time, see [30]. For this purpose, we
first construct, in Section 5.1, probabilistic models for two physical input variables that critically impact
the CDR solution, namely the viscosity ν and the advection direction α. These quantities are routinely
assumed homogeneous over Ω (see e.g., [19, 21, 13]) and are thus modeled as random variables. We next
address, in Section 5.2, the propagation of uncertainties using a standard stochastic collocation approach.
Since the evolution of the two error estimators ηVMS and ηOSS with respect to the aforementioned problem
parameters is similar (see Section 4.3), results are only reported for the OSS error estimator, ηOSS.

5.1. Construction of the probabilistic models

Let N and A be the random variables, defined on a probability space (Θ,Σ,P), with values in
R>0 and [−π, π] respectively, corresponding to the stochastic modeling of the viscosity ν and advection
direction α. It is assumed below that N and A are statistically independent. Let H denote the random
variable corresponding to the stochastic error estimator ηOSS. Let L2(Θ,R) be the space of real-valued
second-order random variables (E{X2} < +∞, ∀X ∈ L2(Θ,R)), equipped with the inner product

< X,Y >Θ= E{XY } =

∫
Θ

X(θ)Y (θ) dP(θ) =

∫
R

∫
R
xy PXY (dx, dy) ,

where PXY (dx, dy) is the joint probability distribution of X and Y , and induced norm ‖X‖Θ =<

X,X >
1/2
Θ , L2(Θ,R) is a Hilbert space.

In order to account for the wide scale of variations in viscosity values, it is appropriate to introduce
the Gaussian random variable Xν with mean µXν and standard deviation σXν , defined in (Θ,Σ,P),
with values in R, such that

N = 10Xν . (40)

The probability density function pN of N is thus given by

pN (n) =
1

σXν ln(10)
√

2π
× 1

n
× exp

(
−
(

ln(n)/ ln(10)− µXν
2σXν

)2
)
, ∀n > 0 . (41)

The random variable Xν is then expressed as

Xν = µXν + σXνΞ1 , (42)

where Ξ1 is a standard Gaussian random variable.
The random variable A is next modeled through an affine transformation of an auxiliary Beta random

variable:
A = −π + 2πB , (43)

in which B follows a (unimodal) Beta distribution with shape parameters λ1 > 1 and λ2 > 1, B ∼
B(λ1, λ2). Denoting by µA and σ2

A the mean and variance of A, respectively, it can de deduced that

λ1 = −πµ
2
A + πσ2

A − π3 + φ(µA, σA)

2πσ2
A

(44)
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and

λ2 = −πµ
2
A + πσ2

A − π3 − φ(µA, σA)

2πσ2
A

, (45)

with
φ(µA, σA) = µA(µ2

A + σ2
A − π2) . (46)

Note that the conditions λ1 > 1 and λ2 > 1 yield implicit constraints on the admissible values of µA
and σA. Denoting by FB(λ1,λ2) and Φ the cumulative distribution functions of the Beta law B(λ1, λ2)
and standard Gaussian law, respectively, it follows that

A = −π + 2πF−1
B(λ1,λ2) (Φ(Ξ2)) , (47)

where Ξ2 is a standard Gaussian random variable.
Note that the probabilistic models for N and A are constructed in such a way that: (i) they involve

a low-dimensional parametrization, typically through mean and standard deviation values (the former
being of primary importance to explore various regimes at the propagation stage); and (ii) they satisfy
desired constraints, such as boundedness in the case of the random variable A. The aforementioned
models then correspond to the probability distributions obtained by invoking the maximum entropy
principle [31, 32, 33], which gives the most objective stochastic models that are consistent with the
available information.

5.2. Framework for uncertainty propagation

Assuming that H ∈ L2(Θ,R), an approximation of the solution map H = f̃(N(Ξ1), A(Ξ2)) =
f(Ξ1,Ξ2), where f̃ represents the action of the CDR operator (with physical variables), is then classically
constructed using a polynomial chaos expansion (PCE) with a Gaussian germ, [34, 35, 36, 37].

H =

+∞∑
β,|β|=0

hβΨβ(Ξ) (48)

where β = (β1, β2) ∈ N2 is a multi-index with |β| = β1 + β2, {Ψβ}β are the (normalized) multi-
dimensional Hermite polynomials and Ξ = (Ξ1,Ξ2). These polynomials form an orthonormal basis with
respect to the standard Gaussian measure PΞ(dξ) = pΞ(ξ)dξ on R2:

< Ψβ,Ψβ′ >Θ=

∫
R2

Ψβ(ξ)Ψβ′(ξ) pΞ(ξ)dξ =

2∏
i=1

δβiβ′
i
, (49)

with δij the Kronecker delta. As a consequence, one has

hβ =< H,Ψβ >Θ . (50)

In practice, a mean-square convergent truncated series is considered:

H(Q) =

Q∑
β,|β|=0

hβΨβ(Ξ) . (51)

Let Npce = (2+Q)!/(2Q!) be number of terms contained in the above series. Assuming a lexicographical
ordering of the multi-indices, Eq. (51) can be conveniently rewritten (with obvious notations) as

H(Npce) =

Npce−1∑
i=0

hiΨi(Ξ) . (52)

Note that some applications below involve one single random variable (i.e. either Ξ1 or Ξ2, for problems
where only the viscosity or the advection direction is randomized, respectively), in which case the above
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classical formulation reduces in a straightforward manner. Various methods have been proposed in
the literature to evaluate the chaos coefficients in Eq. (50), see e.g.,[2, 38, 39]. In what follows, a
Gauss-Legendre or Genz-Keister nested rules were used for low stochastic dimensions, and the sparse
pseudospectral approach developed in [40] was used for higher orders. All computations have been
conducted using DAKOTA (see [41]), interfaced with FEMPAR.

5.3. Numerical results for problem A and B with random viscosity

Throughout this section, uncertainty propagation is achieved considering the stochastic viscosity
exponent Xν as the sole random input (defined in Section 5.1), the advection direction being set to
a = (3, 2)T . The manufactured polynomial and boundary layers solutions described in Section 4.1.1
and Section 4.1.2 are used as benchmark problems. Based on the results shown in Figure 11(a), two
mean values of Xν are purposely selected to address smooth and non-smooth regimes: the latter will
correspond to µXν = −4.0 and µXν = −2.2, respectively.

5.3.1. Convergence analysis of the PCE

In this section, the convergence of the PCE is assessed for a uniform mesh of 322 quadrilateral
elements. The Monte Carlo method is used as the reference stochastic solver, considering M = 105

independent realizations of the input random variable. In what follows, this reference solution is denoted
with the superscript “0”. The convergence study is carried out by taking Npce = {2, 4, 8, 32, 64, 128},
and the numerical integration is done with at least nqp = Npce+1 quadrature points. The error function
Npce 7→ eΘ(Npce) is defined as

eΘ(Npce) = ‖H(Npce) −H0‖Θ .

The convergence of this error function can be observed in Figure 13 for both µXν = −4.0 and µXν =
−2.2. In the former case, the PCE exhibits fast convergence, with results close to the reference solution

Figure 13: Problem A. Convergence of the L2-norm of the error, eΘ, for the case µXν = −4.0 and µXν = −2.2.

even at small orders (Npce = 2 or 4). This is an expected behavior, as the solution map is smooth in the
explored viscosity regime (convection-dominated regime; see Figure 11(a)) and can thus be described
with the global basis functions. In contrast, the L2 errors obtained with the second case, µXν = −2.2, are
much larger, and high orders are required to reach a reasonable approximation. This result is induced by
the non-smoothness of the solution in the viscous-dominated regime (see Section 4.3.2), which challenges
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the PCE. These behaviors are illustrated in Figure 14, in which the values of the OSS error estimator are
reported for a set of 12,800 samples, as well as in Figure 15, where results are shown using probability
density functions. For non-smooth response functions, potential remedies include the use of local basis
functions [42] or spectral products (see [38, Chapter 4.5.4]). Investigating such methods is out of the
scope of the current work and will be considered in future works.

(a) µXν = −4.0. (b) µXν = −2.2.

Figure 14: Problem A. Realizations of a 12800 samples set for the MC and PCE methods with different number of
quadrature points.

(a) µXν = −4.0. (b) µXν = −2.2.

Figure 15: Problem A. Estimated error KDE (p̂η(η)) using the PCE method for the case µXν = −4.0 (left) and µXν = −2.2
(right).

Remark. The poor convergence of the PCE is expected for functions of the absolute value type, which
is the case of the error estimator ηOSS under consideration (see (32), and note the presence of the
L∞-norm).
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5.3.2. Comparison between the stochastic exact and estimated errors in a parameter independent solution

This section is dedicated to the comparison between the stochastic exact error, denoted as E(Npce),
and the stochastic estimated error, H(Npce). Note that E(Npce) is a random variable corresponding to
the exact error, approximated using a PCE approach equivalent to (52),

E(Npce) =

Npce−1∑
i=0

eiΨi(Ξ) . (53)

with the coefficients, ei, computed using a quadrature rule in which each quadrature point evaluation
is obtained analytically from the solution (36). In order to perform the analysis, three mean values for
the random exponent are considered, µXν = {−6,−4,−2}. The last two values correspond to the cases
addressed in the previous section, while µXν = −6 is considered to explore the asymptotic convection
regime. A standard deviation of σXν = 0.1 is selected for all cases, and a fixed advection direction,
defined by αa = 33.69◦, is used. Here, the computation of the chaos coefficients is done using the Genz-
Keister nested quadrature rule (in which the tolerance on the 2-norm of the change in the response
covariance matrix is set to 1.0e− 4, hence yielding a maximum of 4 refinement iterations).

The histograms and the KDE for the exact error distribution and the OSS error estimator distri-
bution are reported in Figure 16. Three different structured meshes are considered, consisting of 322,
642 and 1282 quadrilateral elements (from left to right). For µXν = −2.0 (see the top row in Figure
16), the results show that the stochasticity in the viscosity generates high fluctuations for both the
exact and estimated errors. This behavior is expected since this mean value corresponds to a viscous
dominated regime, as shown in Section 4.3. For µXν = −4.0 (middle row), the level of statistical fluc-
tuations significantly decreases, in accordance with the sensitivity analysis shown in Figure 11. A more
extreme behavior is observed for µXν = −6.0 (bottom row), for which the estimated and exact errors
are almost deterministic. Finally, it should be noticed that the evolution of the mean behavior while
refining the mesh is consistent with standard results obtained within deterministic settings, for the three
configurations tested.

In order to provide a quantitative insight in the comparison of the probability density functions in
Figure 16, we present, in Table 1, the coefficients of variation of both, the exact and estimated error
distributions, for different meshes and viscosity values. As expected, the coefficient of variation decreases

Table 1: Coefficient of variation of the distributions shown in Figure 16.

Elements
µXν = −2.0 µXν = −4.0 µXν = −6.0

Exact ηOSS Exact ηOSS Exact ηOSS

322 4.07e− 02 1.33e− 01 5.91e− 04 8.64e− 04 5.93e− 06 8.64e− 06
642 5.12e− 02 6.20e− 02 1.05e− 03 2.00e− 03 1.06e− 05 2.00e− 05
1282 5.13e− 02 3.28e− 02 1.96e− 03 4.42e− 03 1.99e− 05 4.30e− 05

when the problem becomes convection-dominated (results from left to right in Table 1), while the effect
of mesh refinement is less pronounced (from top row to bottom row). In addition, the values for the
exact and estimated errors are found to be of the same order.

5.3.3. Comparison between the stochastic exact and estimated errors in a parameter dependent solution

In Section 5.3.2 we have compared the exact and estimated errors for the test problem A, whose
analytical solution is independent of the uncertain parameters. In order to deepen the analysis, in this
section we compare the errors for problem B (see (37)), in which the analytical solution depends on
the uncertain viscosity. The same three mean values for the random exponent are considered, µXν =
{−6.0,−4.0,−2.0}, and the same standard deviation of σXν = 0.1 is selected for all cases. Likewise the
advection direction is fixed with a direction defined by αa = 56.31◦. The same setting for the polynomial
chaos coefficients computations as in Section 5.3.2 is considered here.
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(a) 322 elements, µXν = −2.0. (b) 642 elements, µXν = −2.0. (c) 1282 elements, µXν = −2.0.

(d) 322 elements, µXν = −4.0. (e) 642 elements, µXν = −4.0. (f) 1282 elements, µXν = −4.0.

(g) 322 elements, µXν = −6.0. (h) 642 elements, µXν = −6.0. (i) 1282 elements, µXν = −6.0.

Figure 16: Problem A. Histogram and KDE for different meshes (322, 642 and 1282 elements) and different viscosity values
(µXν = −2.0, µXν = −4.0 and µXν = −6.0). The resulting expansion orders for each subfigure are the following: (a)
Npce = 14, (b-c) Npce = 7, (d-i) Npce = 2.

Figure 17 depicts the histograms and the KDE for the exact error distribution and the OSS error
estimator distribution. Again, three different structured meshes are considered, consisting of 322, 642

and 1282 quadrilateral elements (from left to right). Comparing Figure 16 and Figure 17 we see that
similar results are observed for both problems. As in the previous section, for µXν = −2.0 (see the top
row in Figure 17), we see that the stochastic viscosity results in high fluctuations for both the exact and
estimated errors. Similarly, for µXν = −4.0 (middle row), the level of statistical fluctuations significantly
decreases, and for µXν = −6.0 (bottom row) the estimated and exact errors are almost deterministic.
Note that, unlike the results shown in Figure 16, the error is overestimated for problem B.

In Table 2, we show the coefficients of variation of both the exact and estimated error distributions,
for different meshes and viscosity values. The same general conclusions can be drown from Table 1
and Table 2, where the reduction of the viscosity towards the convection-dominated (see the results
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(a) 322 elements, µXν = −2.0. (b) 642 elements, µXν = −2.0. (c) 1282 elements, µXν = −2.0.

(d) 322 elements, µXν = −4.0. (e) 642 elements, µXν = −4.0. (f) 1282 elements, µXν = −4.0.

(g) 322 elements, µXν = −6.0. (h) 642 elements, µXν = −6.0. (i) 1282 elements, µXν = −6.0.

Figure 17: Problem B. Histogram and KDE for different meshes (322, 642 and 1282 elements) and different viscosity values
(µXν = −2.0, µXν = −4.0 and µXν = −6.0). The resulting expansion orders for each subfigure are the following: (a)
Npce = 25, (b-c) Npce = 7, (d-i) Npce = 2.

Table 2: Coefficient of variation of the distributions shown in Figure 17.

Elements
µXν = −2.0 µXν = −4.0 µXν = −6.0

Exact ηOSS Exact ηOSS Exact ηOSS

322 1.17e− 01 2.27e− 01 5.22e− 04 4.99e− 04 5.27e− 06 5.01e− 06
642 2.08e− 01 2.68e− 01 1.03e− 03 1.01e− 03 1.05e− 05 1.01e− 05
1282 2.96e− 01 2.94e− 01 2.02e− 03 2.05e− 03 2.09e− 05 2.05e− 05

from left to right) is the dominant factor affecting the coefficient of variation. Instead, the effect of
mesh refinement is less important (see the results from top to bottom row). Note that in problem B,
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the values of the coefficient of variation for the exact and estimated error distributions are in better
agreement than in problem A.

5.4. Numerical results for problem A with random advection direction

In this section, uncertainty propagation is investigated on the manufactured solution problem A,
parametrized by a deterministic viscosities (with values coinciding to the mean models introduced in
the previous section, ν = {10−2.0, 10−4.0, 10−6.0}) and a stochastic advection direction A (defined in
Section 5.1). The mean value of the latter is set to µA = 33.69◦, and a standard deviation of σA = 5◦

is used. Note that for each setting, the convergence of the PCE is ensured.
The results are shown in Figure 18 for the three different meshes introduced previously. For low

(a) 322 elements, ν = 10−2.0. (b) 642 elements, ν = 10−2.0. (c) 1282 elements, ν = 10−2.0.

(d) 322 elements, ν = 10−4.0. (e) 642 elements, ν = 10−4.0. (f) 1282 elements, ν = 10−4.0.

(g) 322 elements, ν = 10−6.0. (h) 642 elements, ν = 10−6.0. (i) 1282 elements, ν = 10−6.0.

Figure 18: Problem A. KDE for different samples set for the MC method (top) and for different collocation points for the
SC method (bottom). The resulting expansion orders for each subfigure are the following: (a-c) Npce = 7, (d-i) Npce = 14.

viscosity values (top row), the spread of the estimated error distribution gets smaller than the spread
of the exact error distribution as the mesh is refined. Although this case is viscous dominated, it is
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seen that the variation of the advection direction also has an impact on the estimated and exact errors.
Similar results are obtained for ν = 10−4.0 (middle row) and ν = 10−6.0 (bottom row). These two cases
are in the advection dominated regime, and we see that the effect of a varying advection direction is the
same for both viscosity values.

The values of the coefficients of variation associated with the probability density functions depicted
in Figure 18 are reported in Table 3. These coefficients are of the same order for the three viscosity
cases considered. As noticed before, these results show that the variability on the advection direction
produce variation on the error (estimated and exact), irrespective of the Péclet number.

Table 3: Coefficient of variation of the distributions shown in Figure 18.

Elements
ν = 10−2.0 ν = 10−4.0 ν = 10−6.0

Exact ηOSS Exact ηOSS Exact ηOSS

322 5.41e− 02 3.62e− 02 4.88e− 02 4.45e− 02 4.87e− 02 4.45e− 02
642 5.04e− 02 2.64e− 02 4.68e− 02 5.10e− 02 4.67e− 02 5.12e− 02
1282 4.74e− 02 1.55e− 02 4.58e− 02 5.45e− 02 4.57e− 02 5.53e− 02

5.5. Characterization of the stochastic efficiency index for problems A, B and C

In a deterministic setup, the difference between the estimated and the exact errors can be measured
by the efficiency index defined in (35). It is then natural, within this uncertainty propagation analysis,
to introduce its random version, denoted by Ieff. This random variable, defined on (Θ,Σ,P), is then
defined as

Ieff =
H

E
,

where E is the random variable corresponding to the stochastic exact error. Below, the characterization
of Ieff is performed for the three manufactured solution problems, and three probabilistic setups are
examined:

• in the first case (C1), the setup coincides with the one introduced in Section 5.3, meaning that
only the viscosity parameter is randomized (the mean values and standard deviation remain the
same);

• the second case (C2) corresponds to the parametrization detailed in Section 5.4, involving the
stochastic advection direction (here again, the values of the hyper-parameters are preserved);

• in the third configuration (C3), both the viscosity and advection direction are made stochastic.

In all cases, convergence analysis for the PCE are carried out following the strategy detailed in the
previous sections. The results characterizing Ieff for the polynomial manufactured solution (36) (problem
A) are shown in Figure 19. The case of a random viscosity and a fixed advection direction (case (C1))
is shown in the top row. As shown previously, the variability on the viscosity does not affect the
efficiency index for the case Xν = −6.0 (right panel), which is convection dominated. In this case, the
efficiency index tends to become deterministic. Of course, the impact of the stochasticity in the viscosity
parameter increases while transitioning toward the viscous dominated regime. For Xν = −4.0 (middle
panel), the efficiency index varies less for coarse meshes than for fine meshes, although the variation
remains contained overall. This behavior is reversed for Xν = −2.0 (left panel), where the coarsest
meshes have a distribution with values between 1.0 and 1.45, while the finest meshes have a distribution
with efficiency values between 0.95 and 1.05.

When only the advection direction is randomized (case (C2)), the efficiency index presents substantial
variability for the three values of the deterministic viscosity (middle row). When ν = 1.0e − 4 (middle
panel) and ν = 1.0e− 6 (right panel), the distributions of the efficiency index are very similar. That is
an expected result, since for these two cases, the flow is convection dominated. Moreover, we see that for
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(a) µXν = −2.0 and αa = 33.69◦. (b) µXν = −4.0 and αa = 33.69◦. (c) µXν = −6.0 and αa = 33.69◦.

(d) Xν = −2.0 and µA = 33.69◦. (e) Xν = −4.0 and µA = 33.69◦. (f) Xν = −6.0 and µA = 33.69◦.

(g) µXν = −2.0 and µA = 33.69◦. (h) µXν = −4.0 and µA = 33.69◦. (i) µXν = −6.0 and µA = 33.69◦.

Figure 19: Problem A. Histogram and KDE for different mesh sizes with random viscosity (top row), random advection
direction (middle row), and random viscosity and advection direction (bottom row).

these two viscosity values, the distribution of Ieff seems to converge towards the one obtained with 1282

elements as the mesh is refined, with values concentrated near 0.80. For the case in which the viscosity
is set to ν = 1.0e− 2 (left panel), the realizations of the efficiency index present higher amplitudes and
variability.

When the stochastic viscosity and stochastic advection direction are both involved (bottom row), the
results obtained for µXν = −4.0 (left panel) and µXν = −6.0 (right panel) are similar to those obtained
with a deterministic viscosity (case (C2)), regardless of the mesh density. For µXν = −2.0 (left panel),
the probability density functions of Ieff differ from those estimated with the univariate configurations
(C1) and (C2). As expected from a physical viewpoint, these results suggest that for the manufactured
polynomial solution (problem A), analyzing the viscous dominated regime necessitates that both the
viscosity and the advection direction are made random, while the convection dominated case can be
addressed by randomizing the advection direction only.
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Similar conclusions can be drawn for the manufactured analytical solution with a boundary layer
(problem B), for which results are shown in Figure 20. The results with a viscosity value of ν = 1.0e− 6

(a) µXν = −2.0 and αa = 56.31◦. (b) µXν = −4.0 and αa = 56.31◦. (c) µXν = −6.0 and αa = 56.31◦.

(d) Xν = −2.0 and µA = 56.31◦. (e) Xν = −4.0 and µA = 56.31◦. (f) Xν = −6.0 and µA = 56.31◦.

(g) µXν = −2.0 and µA = 56.31◦. (h) µXν = −4.0 and µA = 56.31◦. (i) µXν = −6.0 and µA = 56.31◦.

Figure 20: Problem B. Histogram and KDE for different mesh sizes with random viscosity (top row), random advection
direction (middle row) and random viscosity and advection direction (bottom row).

(right panel) and ν = 1.0e − 4 (middle panel) are even closer than for the previous problem. Here, we
also see that for the viscous dominated case (left panel), we have different efficiency distributions for
the three cases considered (C1, C2 and C3). However, for the convection dominated cases (middle and
right panels), the efficiency index is almost constant when the advection direction is deterministic (case
(C1)) fixed, while cases (C2) and (C3) give same results.

Finally, in Figure 21, we depict the efficiency distributions for the circular inner layer test (problem
C). For this problem, in the viscous dominated regime, the error estimator efficiency goes to zero as we
refine the mesh, see Figure 6(b). This behavior is also observed in Figure 21, where for viscosity values
of ν = 1.0e − 2 (left panel) we see that the distributions tend to a deterministic value close to zero as
the mesh is refined. For the case of ν = 1.0e−4 (middle panel), the efficiency values also decay, but at a
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(a) µXν = −2.0 and αa = 56.31◦. (b) µXν = −4.0 and αa = 56.31◦. (c) µXν = −6.0 and αa = 56.31◦.

(d) Xν = −2.0 and µA = 56.31◦. (e) Xν = −4.0 and µA = 56.31◦. (f) Xν = −6.0 and µA = 56.31◦.

(g) µXν = −2.0 and µA = 56.31◦. (h) µXν = −4.0 and µA = 56.31◦. (i) µXν = −6.0 and µA = 56.31◦.

Figure 21: Problem C. Histogram and KDE for different mesh sizes with random viscosity (top row), random advection
direction (middle row) and random viscosity and advection direction (bottom row).

lower rate. In that case, we observe that the variability of efficiency values for meshes with 322 and 642

elements is less important than the variability of meshes with 162 and 1282 elements, for the three cases
considered (C1, C2 and C3). Also note that for the middle panel, the distributions for meshes 642 and
1282 elements are far apart, implying that in this regime the effect of the mesh size is important. This
behavior is not observed for the case with ν = 1.0e− 6 (right panel), where the efficiency distributions
for the two finest meshes are close. Here, also according to the results shown in Figure 6(d), the efficiency
distributions tend to values close to 1.0.

6. Conclusions

We have defined a new a posteriori error estimator based on the VMS approach using orthogonal
subscales for the CDR problem. The error estimator is defined in the Lr-norm and is constructed from
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the L∞-norm of the orthogonal projection of the residual and the inter-element fluxes.
The robustness of the proposed error estimator and an existing VMS error estimator have been

extensively assessed for three different manufactured analytical solutions. We have analyzed the evolution
of the efficiency index as the mesh is refined for viscous-dominated and convection-dominated regimes.
Similar results are obtained for the proposed and existing error estimators, with values of efficiency index
close to 1.0 for the proposed error estimator as we refine the mesh, especially for convection-dominated
regimes.

A parametric study has been carried out for one of the benchmarks with respect to physical properties
and mesh discretization. The result of this study was that the error estimator may be a non-smooth
function of the varying parameters.

We have also evaluated the impact of system-parameter uncertainties on the proposed error esti-
mator. In this regard, the convergence analysis of the uncertainty propagation method revealed that
the non-smoothness of the error estimator response as a function of the input variables (viscosity or
advection direction) significantly affects the convergence of the PCE. Further, we have compared the
distributions of the exact and estimated error when uncertain viscosity and advection direction are con-
sidered. Finally, we have analyzed the efficiency index probability distributions obtained for the three
benchmarks considered under different probabilistic settings.
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Appendix A. Definition of the orthogonal projection

The selection of the space for the approximation of the subscales determines the projection P ap-
pearing in the right-hand side of (14). The first option, which has been denoted as standard VMS in
this work, is to take the subscales in the space of the residuals, that is,

P := I. (A.1)

This option was already considered in [24] and named Algebraic Subgrid Scale (ASGS) in [17].
Another possibility introduced in [17] is to consider the space of the subscales orthogonal to the FE

space. The main motivation of the method is that a stability estimate for the projection onto the FE
space of the convective term can already be obtained in the standard Galerkin method and therefore the
only “missing” part is the orthogonal one. The Orthogonal Subscales (OSS) method is then characterized
by the following projection definition:

P := Π⊥h = I −Πh, (A.2)

where Πh is the L2-projection onto the FE, Vh, space given by

(Πh(w), vh) = (w, vh) ∀vh ∈ Vh. (A.3)

With this choice, the orthogonality between the space of subscales and the FE space is only guar-
anteed when the stabilization parameters are constant. Otherwise, when this condition is not satisfied,
the method is still optimally convergent, but the orthogonality property is lost. In order to enforce
orthogonal subscales, a slight modification of the projection Πh is needed. That is the use of a weighted
projection, Πτ .

Note that we project onto the space Vh, but we could also compute the projection onto V0,h. However,
according to [43], this last option could lead to spurious numerical boundary layers.

Given any scalar w ∈ V, the weighted projection Πτ is defined by

(τΠτ (w), vh) = (τw, vh) ∀vh ∈ Vh. (A.4)

Using the weighted projection (A.4), the approximation equivalent to (14) would read

u′ ≈ τΠ⊥τ (f − Luh) = τ (f − Luh − ξh) , (A.5)

where ξh := Πτ (f − Luh) is the projection of the residual (f − Luh) into the finite element space Vh.
With these definitions, the discrete problem (16) can be reformulated as: find [uh, ξh] ∈ V0,h × Vh such
that

a(uh, vh) +
∑
K∈Th

(τ (f − Luh − ξh) ,L∗vh)K = (f, vh) + (vh, h)Γh ∀vh ∈ V0,h, (A.6a)

(τξh, wh) = (τ(f − Luh), wh) ∀wh ∈ Vh. (A.6b)

Appendix B. Error estimators computation algorithm

The error estimators used in this work, ηOSS

K and ηVMS

K , are given by equations (32) and (33), respec-
tively. Since they are explicit a posteriori error estimators, its computation can be easily done once the
numerical solution of the problem, uh, is obtained, following the steps described in Algorithm 1.
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Algorithm 1 VMS error estimator computation

1: Solve the CDR problem (16) using (17) for the OSS method, or (14), with P ≡ I for the VMS
method

2: Result: uh (and Πh(Luh − f) for the OSS method)
3: for K ∈ Th do
4: Evaluate ‖f − Luh‖L∞(K) (or ‖f − Luh −Πh(f − Luh)‖L∞(K) for OSS)

5: Evaluate ‖JBuhK‖L∞(K)

6: Evaluate meas(K)
7: Evaluate meas(∂K)

8: Evaluate τKL2 := min
(
hflow√

3|a| ,
h2

24.24ν ,
1
|s|

)
9: Compute ηOSS

K or ηVMS

K , using (32) or (33), respectively
10: Add contribution to η
11: end for
12: Resutl: Global error estimator η
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